Medical Image Quality and Dose Optimization in the Digital Era: Clinically Focused Issues

Perry Sprawls, Ph.D.

To follow on ipad . http://www.sprawls.org/ipad

January 23, 1896

The Medical Imaging Process All Modalities

Computed Tomography

Radiation Dose

Imaging Protocols

Technology

Science

Have you ever seen an image of an X-ray beam?

X-Ray Image Noise

The Quantum Structure of the X-ray Beam

Randomly Distributed In

Space

Photon Interactions

Produces

Image Noise

IMAGE RECEPTOR

Small Areas (Pixels)

IMAGE RECEPTOR

Small Areas (Pixels)

IMAGE RECEPTOR

		105				100			105
	105		- 3	110					
							90		
			95		100				100
95									
		100		90					
						100		100	
		100							
	100							110	
			105		100				105
95							95		

(Small Areas/Pixels)

Number of Photons per Pixel

MeanStandard Deviation10010 (10%)100032 (3.2%)10,000100 (1%)

Visibility of Low Contrast Anatomy
Limited By

Pixel Blurring

Digital Image Detail Effect of Matrix Size

Large Matrix

Small Matrix

Small

Pixel Size

Large

Digital X-ray Imaging

Pixel Size

Image Noise

Numerical Size of Digital Images

Modality	Matrix	Bits/Pixel	Image Size (bytes)		
Radionuclide	128 x 128	8	16,384.		
Imaging	120 X 120	6			
MRI	256 x 256	12	98,304.		
Ultrasound	256 x 256	8	65,536.		
CT	512 x 512	12	393,216.		
Fluoroscopy	1024 x 1024	8	1,048,576.		
General	2048 x 2048	12	6,291,456.		
Radiography	2040 X 2040	12	0,291,430.		
Mammography	4,096 x 5120	12	31,457,280.		

The Three Phases of CT Image Formation

Major Protocol Factors

CT Slice Divided into Matrix of Voxels

Voxel Size Controlled By

X-ray Photons Interact With Tissue in A Voxel

Dose is increased by increasing number of photons. Noise is reduced by increasing number of photons.

CT NOISE MEASUREMENT

2	-2	-3	0	-6	-6	1	0
4	1	2	5	-1	1	5	3
2	-1	0	5	0	0	2	1
- 1	-1	-2	0	0	1	0	0
1	1	-2	- 1	1	- 1	-4	-2
-2	2	-1	0	1	-1	-3	0
6	-3	2	1	-4	3	1	4
3	4	2	-4	-3	-1	-2	- 5

Measuring CT Image Noise

Images of Water (CT Number = 0)

Distribution of CT Numbers within ROI

Decreasing Noise

Requires Increased Photons Absorbed Per Voxel

Produces Increasing Dose

Effect of Matrix Size on Image Noise

Large

Large Voxels

Low Noise

Small Voxels

High Noise

The same radiation dose for both images.

Two Major Image Quality Goals

Protocol Factors

VISIBILITY OF DETAIL HIGH

LOW

BLUR

IMAGE DETAIL

NOISE

HIGH NOISE

LOW NOISE

SIGNAL STRENGTH

VISIBILITY OF DETAIL HIGH

LOW

BLUR

IMAGE DETAIL

NOISE

HIGH NOISE

LOW NOISE

SIGNAL STRENGTH

The Medical Imaging Process Image Noise

Source

Modified

Computed Tomography

Radiation Dose

Imaging Protocols

Technology

Science

Clinically Focused Physics Education

Classroom

Clinical Conference

Small Group

"Flying Solo"

For General Physics and Related Topics

Highly Effective

Clinically Rich Learning Activities

Visuals Images Online Modules
Resources and References

Effective Medical Imaging Physics LearningIn The Clinic

The Real World Motivating Interactive Collaborative

The Physicist Provides:
Learning Modules & Collaboration

Medical Image Quality and Dose Optimization in the Digital Era: Clinically Focused Issues

Perry Sprawls, Ph.D.

To follow on ipad . http://www.sprawls.org/ipad